GPLUS EDUCATION

Date : Time :

BIOLOGY

Marks:

ECOSYSTEM

Single Correct Answer Type

- 1. Which ecosystem has the highest gross primary productivity
 - a) Rainforests
- b) Coral reefs
- c) Mangroves
- d) Grass lands

- 2. In primary succession in water, the pioneer species are
 - a) Free floating angiosperm

b) Small phytoplanktons

c) Rooted hydrophytes

- d) Lichens
- 3. The pyramid of biomass will be inverted in the ecosystem of
 - a) Forests
- b) Ponds
- c) Grasslands
- d) Drylands
- 4. Complete the following model of carbon cycle filling *A*, *B*, *C*, *D*, *E* and *F*

- a) A-Osmosis, B-Photosynthesis, C-Respiration, D-Burning of fuel wood, E-Forest food chain, F-Limestone
- b) A-Photorespiration, B-Respiration, C-Respiration, D-Burning of organic debris, E-Pond food chain, F-Dolomite
- c) A-Respiration, B-Photosynthesis, C-Respiration, D-Combustion of fossil fuels, E-Aquatic food chain, F-Coal, oil
- d) A-Respiration, B-Photosynthesis, C-Respiration, D-Burning of forest, E-Terrestrial food chain, F-Forest
- 5. Large unit of land having different types of plants and animals, is called
 - a) Uniform vegetation
- b) Biome
- c) Ecosystem
- d) Niche
- 6. Which of the following is known as the sedimentary cycle because its reservoir is a sedimentary rock?
 - a) Carbon cycle
- b) Hydrologic cycle
- c) Nitrogen cycle
- d) Phosphorus cycle
- 7. In ecological succession the communities in near equilibrium with the environment, are called
 - a) Climax communities

b) Ecofriendly communities

c) Seral communities

- d) Pioneer communities
- 8. Dried plant parts such as leaves, bark, flowers, etc., and dead remains of animals including faecal matter, drop over the soil, constitute
 - I. below ground detritus
 - II. above ground detritus
 - III. litter fall

Choose the correct option

- a) I and II
- b) I and IV
- c) II and III
- d) I and III

- 9. In the following, there is no difference.
 - a) Trophic level-I and herbivores

- b) Primary consumers and herbivores
- c) Primary carnivores and trophic level-II
- d) Secondary consumer and herbivores
- 10. Consider the following statements about carbon cycle
 - I. Carbon is released into the atmosphere
 - II. The atmospheric input of carbon from rainfall is greater

	III. Carbon gas is exchanged between organisms and	atmosphere during respira	ation			
	Which of the statement given above are correct?					
	a) I and II b) I and III	c) II and III	d) I, II and III			
11.	Ecological pyramids were discovered by					
	a) Elton b) Odum	c) Reiter	d) None of these			
12.	Plant successions occurring in a sandy area is					
	a) Psammosere b) Hydrosere	c) Xerosere	d) Lithosere			
13.	An ecosystem is					
	a) Different communities of plants, animals and microbes interact together with their physico-chemical environments					
	b) Different communities of plants and microbes into	eract with their physico-che	emical environments			
	c) A localised assemblage of several plants and anim					
	d) An assemblage of plants, animals and their surrou	ındings				
14.	What do ecologists call the transfer of energy that be the next in a food chain?	gins with the sun and pass	es from one organism to			
	a) A food web	b) A top consumer				
	c) Energy flow	d) A pyramid of number				
15. The energy invested in the production of new tissue by autotrophic organisms is ter			is termed			
	a) Gross primary production	b) Decomposition				
	c) Gross photosynthetic activity	d) Net primary production	n			
16.	Microbes that breakdown the complex organic matte	er into simple substances li	ke carbon, nitrogen, water,			
	etc., are					
	a) Producers b) Decomposers	c) Consumers	d) Symbionts			
17.	Which one of the following is no used for construction	on of ecological pyramids?				
	a) Dry weight	b) Number of individuals				
	c) Rate of energy flow	d) Fresh weight				
18.	Which element is formed by the weathering of rocks	and absorbed by plant from	m the soil?			
	a) Phosphorus b) Carbon	c) Nitrogen	d) Oxygen			
19.	Given diagram represents a pyramid of biomass in a	n aquatic system				
	B 21					
	Identifies A of B and select correct options					
	a) A is phytoplanktons and B is zooplanktons	b) A is zooplanktons and I	B is phytoplanktons			
	c) A is smally body animals	d) B is small body animals	5			
20.	Given below is one of the types of ecological pyramic	ls				
	Trophic level Number of Individuals					
	TC (Tertiary Consumer) 3					
	SC (Secondary consumer) 3,54,000 PC (Primary Consumer) 7.08,000					
	PP (Primary Producer) 58,42,000					
	This type represents					
	a) Pyramid of number in a grassland ecosystem	b) Pyramid of energy in forest ecosystem				
	c) Pyramid of biomass in sea ecosystem	d) Pyramid of biomass in	= '			
21.	The process of breaking down complex organic matt					
	nutrient is called	or morganic substance	do ₂ , mater and			
	a) Humification b) Mineralisation	c) Decomposition	d) Leaching			
22.	Series of changes in structure and comparition of con	-				

	a) Sere	b) Climax community	c) Primary succession	d) Secondary succession
23.	Energy transferred from	on trophic level to another	is	
	a) 5%	b) 10%	c) 15%	d) 20%
24.	When the two ecosystems	s overlap each other, the a	reas is called	
	a) Habitat	b) Niche	c) Ecotone	d) Ecotype
25.	The total amount of nutri	ents like carbon, phosphor	us, calcium, etc., present in	soil at any time is called
	a) Standing crop	b) Standing state	c) Nutrient crops	d) Sediment
26.	A food web is more realis	tic than a food chain for sh	owing the feeding relations	ships in an ecosystem
	because			
	a) It compares the number	er of consumers to the nun	nber of microorganisms in a	ın ecosystem
	b) Food chains use only a	small sampling of organis	ms	
	c) A food web explains w	hy there are more produce	ers than consumers	
	d) Producers are usually	eaten by many different co	nsumers and most consum	ers are eaten by more thar
	one predator			
27.	Identify A, B and C from t	3		
	$Aphids \longrightarrow \boxed{A} \longrightarrow Spa$	$arrow \longrightarrow B$		
	Plants Caterpiller			
	Plants Caterpiller			
		↓		
	Snail → Ch			
	a) A-Bulbul, B-Snake, C-M		b) A-Beetle, B-Lizard, C-P	•
	c) A-Ladybird, B-Snake, C		d) A-Lizard, B-Bird, C-Sna	ake
28.	Which of the following ec			
			ramid of biomass in pond o	
			nid of biomass in pond ecos	-
		pasific food chain and pyra	amid of number in pond eco	osystem
	d) All of the above	Carrier EDITA	LACITAL	
29.	An individual transitional			
	a) Climax community	b) Pioneer community	c) Seral communities	d) Single community
30.	The living organisms pres	sent in an ecosystem forms		
	a) Abiotic components		b) Biotic components	
	c) Physical components		d) Chemical components	
31.	-	-	time period by plants during	
	a) Gross primary product		b) Net primary productiv	ity
	c) Secondary productivity		d) Decomposition	
32.	The decomposition rate is	s higher when detritus is r		
	a) Nitrogen and sugar		b) Phosphorus and sugar	
0.0	c) Calcium and sugar		d) Both (b) and (c)	
33.	A man-made ecosystem is	5	1334 1 11 11	
	a) Less in diversity		b) More in diversity	
0.4	c) Man does not make eco		d) More stable than natur	
34.	The green plants in an ecocalled	osystem which can trap so	lar energy to convert it into	chemical bond energy are
	a) Producer	b) Decomposer	c) Consumer	d) Predators
35.	Vegetable eating person a	•		
	a) primary producer	b) primary consumer	c) secondary consumer	d) tertiary consumer
36.	Consider the following sta		-	
	_		rumers through a series of o	organisms is called food
	chain	-		

- II. A food chain is always straight and proceeds in a progressive straight line
- III. In a food chain, there is unidirectional flow of energy from sun to producers and subsequently to series of different types of consumers

Which of the statements given above are correct?

- a) I and II
- b) I and III
- c) II and III
- d) I, II and III

- 37. Food chain consists of
 - a) Plants
- b) Herbivores
- c) Carnivores
- d) All of these

- 38. Consider the following ecosystem
 - I. Pond ecosystem
- II. Terrestrial ecosystem
- III. Oceans ecosystem IV. Forest ecosystem

There are mainly three food chain in natural ecosystem's grazing food chain, detritus food chain, parasite food chain

Find out which of the following will have grazing food chain?

- a) Pond ecosystem
- b) Terrestrial ecosystem c) Ocean ecosystem
- d) All of these
- 39. A much large fraction of energy flows in aquatic ecosystem through
 - a) grazing food chain
- b) Detritus food chain
- c) Complex food chain
- d) Food web

- 40. Consider the following statements concerning food chains.
 - I. Removal of 80% tigers from an area resulted in greatly increased growth of vegetation.
 - II. Removal of most of the carnivores resulted in an increased population of deers.
 - III. The length of food chains is generally limited to 3 to 4 trophic levels due to energy loss.
 - IV. The length of food chains may vary from 2 to 8 trophic levels.

Which two of the above statements are correct?

- a) II and III
- b) III and IV
- c) I and IV
- d) I and II

- 41. Consider the following statements about food web
 - I. One organism hold more than one position
 - II. The flow of energy is very difficult to calculate
 - III. Instead of straight line it is a series of branching lines
 - IV. Competition is amongst the members of same and different trophic levels

Which of the statements given above are correct?

- a) I, II and III
- b) I, III and IV
- c) II, III and IV
- d) I, II, III and IV

- 42. The statement, 'Tiger is in the apex of food chain', indicates
 - a) Tiger has many enemies
 - b) Tiger has maximum biomass
 - c) Tiger is omnivorous
 - d) Tiger is dependent upon large number of herbivores and even more number of trees in forest
- 43. Simplified model of phosphorus cycling in a terrestrial ecosystem is given below. Identify A, B, C and D

- a) A-Weathering, B-Decomposition, C-Consumer, D-Soil
- b) A-Decomposition, B-Weathering, C-Producer, D-Soil
- c) A-Weathering, B-Decomposition, C-Decomposer, D-Soil
- d) A-Decomposition, B-Decomposer, C-Weathering, D-Soil
- 44. Primary productivity is affected by
 - I. temperature

	II. sunlight		
	III. moisture		
	IV. availability of nutrients		
	a) I and II b) I, II and III	c) II, III and IV	d) I, II, III and IV
45.	Terai forest is	<i>,</i>	<i>,</i> , ,
	a) Tropical forest	b) Coniferous forest	
	c) Deciduous forest	d) Temperate deciduous f	orest
46.	The figure given below is a diagrammatic representa		
40.	do A, B and C represent respectively?	tion of response of organis	ins to abiotic factors. What
	do A, B and C represent respectively:		
	- /B		
	↑		
	A C		
	Internal level		
	<u> </u>		
	ਸ਼ /		
	External level>		
	A B C		
	a) Conformer Regulator Partial regulator		
	b) Regulator Partial regulator Conformer		
	c) Partial Regulator Regulator Conformer		
	d) Regulator Conformer Partial regulator		
47.	The ecological niche of population is a		
	a) Geographical area that it covers	b) Place where it lives	
	c) Set of conditions and resource it uses	d) None of the above	
48.	Inverted pyramid is found in	ATTON	
	a) Biomass pyramid of aquatic system	b) Energy pyramid of gras	sland
	c) Biomass pyramid of grassland	d) Pyramid of number of a	quatic system
49.	If a predator is overexploits its prey in a ecosystem t	hen what might be consequ	ences of this?
	a) Prey might be extinct	b) Predator might be extir	
	c) Both (a) and (b)	d) No affect on prey and p	
50.	Which of the following organisms form the decompo		
	a) <i>Pteris</i> b) Bacteria	c) Saprophytic fungi	d) Both (b) and (c)
51.	Osmotrophs belong to		, (, (,
	a) Primary consumers b) Secondary consumers	c) Top carnivores	d) Decomposers
52.	Greater primary productivity depends upon	<i>y</i> 1	, 1
	a) Rain (humidity)	b) Availability of nutrients	5
	c) Both (a) and (b)	d) None of these	
53.	Word detritus includes	,	
	a) Dead plant parts b) Remains of animals	c) Animal excretions	d) All of these
54.		_	,
0 1.	a) Protozoa b) Plants	c) Microorganisms	d) None of these
55.	Some of the stages in the hydrarch are labelled as	· / · · · · · · · · · · · · · · · · · ·	.,
1	I. Marsh meadow stage		
	II. Reed swamp stage		
	III. Submerged plant stage		
	IV. Phytoplankton stage		
	V. Submerged free floating plant stage		

GPLUS EDUCATION

Identify the choice that represents the correct sequence of these stages

- a) IV, III, V, II and I
- b) III, V, I, II and IV
- c) II, IV, III, I and V
- d) IV, V, III, II and I

- 56. The correct sequence of food chain is
 - a) Grass \rightarrow insect \rightarrow bird \rightarrow snake
- b) Grass \rightarrow bird \rightarrow insect \rightarrow snake
- c) Snake \rightarrow bird \rightarrow insect \rightarrow grass
- d) Grass \rightarrow snake \rightarrow bird \rightarrow insect
- 57. When the number of organisms at successive levels are plotted they assume the shape of a pyramid. This is called the pyramid of
 - a) Biomass
- b) Number
- c) Energy
- d) None of these

58. Which kind of pyramid is represented by the given diagram

Primary consumers 21
Primary Producer 4

- a) Pyramid of number in tree ecosystem
- b) Pyramid of biomass in tree ecosystem
- c) Pyramid of biomass in aquatic ecosystem
- d) Pyramid of energy in tree ecosystem
- 59. In ecotone, some species become abundant called
 - a) Sibling species
- b) Endemic species
- c) Rare species
- d) Edge species

- 60. Ecosystem may be defined as
 - a) A species along with environment
 - c) Plants found on land

- b) Plants found in water
- d) All plants and animal species along with their environment
- 61. Following are the different stages in primary succession in water

Which of the following is the logical sequence of primary succession in water?

a) II \rightarrow IV \rightarrow V \rightarrow VII \rightarrow I \rightarrow III \rightarrow V

b) $I \rightarrow III \rightarrow V \rightarrow II \rightarrow IV \rightarrow VI \rightarrow VII$

c) $V \rightarrow II \rightarrow IV \rightarrow VI \rightarrow VII \rightarrow III \rightarrow I$

- d) $VI \rightarrow VII \rightarrow III \rightarrow I \rightarrow V \rightarrow II \rightarrow IV$
- 62. Energy flow and energy transformation in living systems strictly conform to the
 - a) Law of limiting factors

b) Liebig's law of minimum

c) Law's of thermodynamics

d) Shelford's law of tolerance

- 63. Phosphorus is required for making
 - I. shell
 - II. bones
 - III. teeth
 - Choose the correct option
 - a) I and II
- b) I and III
- c) II and III
- d) I, II and III
- 64. The species that invade a bare area in ecological succession are called
 - a) Benthos
- b) Biological species
- c) Seral species
- d) Pioneer species

- 65. In a pond ecosystem, benthos means
 - a) Primary consumers in the depth of a pond
- b) Virus
- c) Zooplankton on the water surface
- d) Bacteria

66. The given figure best represents

	a) Pyramid of number in parasitic food chain		b) Pyramid of biomass in forest ecosystem		
c) Pyramid of number in grassland ecosystem d) Pyramid of number in forest ecosyste		forest ecosystem			
67.	Decomposers are				
	a) Autotrophs	b) Autoheterotrophs	c) Organotrophs	d) Heterotrophs	
68.	The lentic ecosystem inc	ludes			
	a) Gravitational water	b) Standing water	c) Rain water	d) Running water	
69.	Primary succession on re	ocks starts with			
	a) Lichen	b) Grass	c) Mosses	d) Ferns	
70.	Energy storage at consu	mer level is called			
	a) Gross primary produc	ctivity	b) Secondary productivit	у	
	c) Net primary productive	vity	d) Net productivity		
71.	True/False				
	I. The total organic matte	er synthesised by the prod	ucers in the process of phot	osynthesis per unit time and	
	area is known as gross p				
	II. Net primary productiv	vity is the weight of the org	ganic matter stored by the p	roducers in a unit	
	area/volume per unit tin	ne			
	a) I is true while II is fals	se	b) II is true, while I is fals	se	
	c) I and II are true		d) I and II are false		
72.	Lion is kept under in Elto	onian pyramid as	CATION		
	a) Producer	b) Primary consumer	c) Secondary consumer	d) Tertiary consumer	
73.	Maximum primary produ	uctivity of pond is achieved	d by		
	a) Phytoplankton	b) Zooplankton	c) Floating plants	d) Red algae	
74.	What is the medium by v	which carbon cycle takes pl	lace?		
	a) Through atmosphere		b) Through ocean		
	c) Through living and de	ead organisms	d) All of the above		
75.	temperature is requi	ired for the proper function	ning of an enzyme. The mos		
	a) Low	b) High	c) Optimum	d) None of the above	
76.	In ecological pyramid the	e base always represent th	eA and the apex represe	entsB Here A and B	
	represents				
	a) A-producers; B-top le		b) A-top level consumer;	_	
	c) A-producers; B-secon	=	d) A-producers; B-prima	ry consumers	
77.	-	ity in the terrestrial ecosys			
	a) Rain forest		b) Deciduous forest		
	c) Mangrove plantation		d) Both (a) and (b)		
78.	The primary consumers				
	a) Phytoplankton	b) Zooplankton	c) Fishes	d) Bacteria	
79.	· ·	•	overload of the carbon cycle		
	a) Photosynthesis	b) Cellular respiration	c) Deforestation	d) Aforestation	
80.		rvoirs of sulphur and carbo			
	a) Atmosphere and cons			b) Earth crust and atmosphere	
	c) Earth crust and producer		d) Atmosphere and predator		

81.	Ecosystem consists of		
	a) Producers b) Consumers	c) Decomposers	d) All of these
82.	Trophic level of food chain having greatest amount of		
	a) Carnivores b) Herbivores	c) Autotrophs	d) Omnivores
83.	The entire sequence of communities that successive	ly changes in a given area a	re called
	a) Sere b) Climax	c) Pioneer	d) Xerarch
84.	Energy flow in ecosystem is		
	a) Bidirectional b) Unidirectional	c) All around	d) None of these
85.	A bear that eats a fish that further ate bugs that ate a	algae is a	
	a) Primary producer b) Primary consumer	c) Secondary consumer	d) Tertiary consumer
86.	Acid secreted lichens on baren rock helps in		
	I. dissolving rocks		
	II. weathering		
	III. soil formation		
	Which of the statements given above are correct?		
	a) I and II b) I and III	c) II and III	d) I, II and III
87.	Ecological succession is		
	a) Directional but unpredictable	b) Directionless but predi	
	c) Directional but predictable	d) Directionless but unpre	edictable
88.	Which one of the following pairs is mismatched?		
	a) Savanna - <i>Acacia</i> trees	•	piphyte
	c) Tundra - Permafrost	d) Coniferous forest - Ev	vergreen
89.	<i>y</i> , <i>y</i> 8		
	a) Geological cycle b) Chemical cycle	c) Geochemical cycle	d) Biogeochemical cycle
90.	The aquatic organism that can actively swim at will	_	
	a) Neuston b) Plankton	c) Nekton	d) Benthos
91.	Green plants and green sulphur bacteria, prepare th	eir organic food themselves	s with the help of sunlight,
	are known as	ALIUN	
	a) Chemoautotrophs b) Photoautotrophs	c) Heterotrophs	d) Chemotrophs
92.	The movement of nutrient elements through various	s components (abiotic and b	piotic) of an ecosystem is
	called		1) (1) 1 1
0.2	a) Carbon cycle b) Geochemical cycle	c) Biogeochemical cycle	d) Chemical cycle
93.	Biotic community along with its interacting physical	•	D E - 1
0.4	a) Phytosociology b) Phytogeography The relation between producers and consumers in a	c) Ecosystem	d) Ecology
94.	The relation between producers and consumers in a	in ecosystem can be graphic	cally represented in the
	form of a pyramid called	a) Di ahawt	d) Drygamid of hismass
٥r	a) Ecological pyramid b) Tropical level	c) Pi chart	d) Pyramid of biomass
95.	Energy stored at the consumer level is	h) Cogon domy productivity	
	a) Primary productivity	b) Secondary productivity	
06	c) Net primary productivity	d) Productivity	
90.	Actively moving organisms in aquatic ecosystem are a) Nekton b) Benthos	c) Viruses	d) None of these
97.	The secondary succession is easy and is completed of		u) None of these
97.	a) Already has soil and some vegetation	b) Is soilless	
	c) Is barren	d) None of the above	
98.	Gross primary productivity is utilised byA inE	•	
70.	Choose the correct option for A and B	/····	
	a) A-plants; B-photosynthesis	b) A-plants; B-respiration	
	c) A-animal; B-respiration	d) A-animal; B-digestion	
	,, F • • • • • • • •	,, - aigoouon	

- 99. What will happen if all the bacteria and fungi are destroyed?
 - a) There will be no disease and death
 - b) No antibiotics would become available
 - c) Dead bodies and excretions will pile up
 - d) Soil will become rich of all nutrients
- 100. A simplified model of pond ecosystem is given below. Identify *A*, *B*, *C*, *D* and *E* and choose the correct option

- a) A-Biotic, B-Abiotic, C-Autotrophs, D-Heterotrophs, E-Detritivores
- b) A-Biotic, B-Abiotic, C-Producer, D-Primary consumers, E-Detritivores
- c) A-Abiotic, B-Biotic, C-Producer, D-Consumers, E-Detritivores
- d) A-Biotic, B-Chemical, C-Primary consumers, D-Secondary consumers, E-Tertiary consumers
- 101. Abiotic components refers to
 - a) Non-living physico-chemical factors
- b) Living physico-chemical factors

c) Gases produced by industries

- d) Living organisms
- 102. Which of the following ecological pyramids can never occur in an inverted from
 - a) Pyramid of number

b) Pyramid of biomass

c) Pyramid of energy

- d) Pyramid of species richness
- 103. Identify the correct type of food chain.

Dead animal \rightarrow Blow fly maggots \rightarrow Common frog \rightarrow Snake

a) Grazing food chain

b) Detrital food chain

c) Decomposer food chain

- d) Predator food chain
- 104. Which of the following is expected to have the highest value (gm/m²/yr) in a grassland ecosystem?
 - a) Secondary production (SP)

b) Tertiary production (TP)

c) Gross production (GP)

d) Net production (NP)

- 105. Ecosystem is
 - a) Always open

- b) Always closed
- c) Both open and closed depending upon community d) Both open and closed depending upon biomass
- 106. Which of the following pair is a sedimentary type of biogeochemical cycle?
 - a) Carbon and nitrogen

b) Phosphorus and sulphur

c) Phosphorus and nitrogen

d) Phosphorus and oxygen

- 107. Tropical dense forests are due to
 - a) Low rainfall and low temperature
 - b) High rainfall and low temperature
 - c) Low rainfall and high temperature
 - d) High rainfall and high temperature
- 108. In a lake, phytoplankton grow I abundance in
 - a) Littoral zone
- b) Limnetic zone
- c) Profundal zone
- d) Benthic region
- 109. At each step of food chain when food energy is transferred from one trophic level to the next higher trophic level only about 10% of energy is passed onto next level. This is known as ...A... given by ...B... in ...C.... Here A, B and C Refers to

	a) A-Energy flow law, B-Li		b) A-10% law, B-Lindeman	
	c) A-Energy flow law, B-Li		d) A-10% law, B-Lipeman	
110.	The process of accumulation		_	ghly resistant to microbial
	action and undergoes deco	omposition at an extremely	slow rate is called	
	a) Mineralisation	b) Humitication	c) Organisation	d) Transformation
111.	Total energy fixed by an ed	cosystem is called		
	a) Primary production		b) Gross production	
	c) Net production		d) Secondary production	
112.	A detrivore is			
	a) Animal feeding on plant	matter		
	b) Animal feeding on dead		ter	
	c) A plant feeding on an ar			
	d) Animal feeding on anotl			
113.	All the animals that depen		led	
	-	b) Root feeders	c) Consumers	d) Grazers
114.	Regarding the mode of obt	-		-
	animals and microorganis			and crassifica files plantes,
	a) Producer, consumers ar		canca	
	b) Primary, secondary and	•		
	c) Consumers, producer a	•		
	d) Autotrophs, heterotrop	-		
115	Out of the following bioged	_	o is gasoous?	
113.			e is gaseous?	
	I. sulphur II. Phosphoru	is		
	III. nitrogen IV. Carbon			
	Choose the correct option	1) 0 1 11		15.111 1.117
446	a) Only I	b) Only II	c) Only IV	d) III and IV
116.	The amount of living matte			
	a) Biomass	b) Standing crop	c) Standing state	d) Productivity
117.	In a food chain, the maxim			15 m
		b) Primary consumers	c) Secondary consumer	d) Tertiary consumers
118.	Overlapping region between			
	a) Biome	b) Ecotone	c) Niche	d) Photic zone
119.	The major functions of an	•		
	I. productivity II. Decomp			
	III. energy flow IV. Nutrier	nt flow		
	Choose the correct option			
		b) II, III and IV	c) I, III and IV	d) I, II, III and IV
120.	Most diverse organism of a			
	a) Producer	b) Consumer	c) Decomposer	d) Carnivore
121.	In grazing food chain ener	gy comes from		
	a) Organic remain	b) Air	c) Water	d) All of these
122.	The amount of usable ener	gy, which is available for d	loing work, when the temp	erature and pressure are
	uniform throughout the sy	stem is called		
	a) Enthalpy	b) Activation energy	c) Spontaneous energy	d) Free energy
123.	Which one of the following	g is correct for xerarch succ	cession?	-
				n hydric to mesic condition
	c) Both (a) and (b)		d) None of the above	-
124.	Biotic components refer to)	-	
	a) Gases produced by indu		b) Nutrient-deficient soil	

						Gpius Eaucatioi
	c) Living orga	nisms			d) Fossil fuels	
			is correct match	ing of a n	-	est type where it normally
	occurs?	ine ronowing	is correct mater	mg or a p	nant, its habitat and the for	est type where it normany
	a) <i>Prosopis,</i> tr	ee. scrub			b) Saccharum officinarum	n grass forest
			pical rain forest		d) <i>Acacia catechu</i> , tree, co	· ·
	-		-		in the given table	microus forest
1201	Organisms	Trophic	Types of	, b and c	in the given tuble	
	Organisms	Level	Food Chains			
	Eagle	A	Grazing			
	Earthworm	Primary	B			
		consumer				
	С	Secondary consumer	Grazing			
	a) A-Secondar		B-Grazing, C-Alg	ae	b) A-Top carnivore, B-De	tritus, C-Frog
	c) A-Scavenge				d) A-Decomposer, B-Detr	
	, ,	_		nd dung	beetle in an ecosystem?	,
	a) They all are		,		b) Primary consumer	
	c) Secondary				d) Tertiary consumer	
	•		is involved in se	dimentar	•	
	a) Carbon	_	o) Nitrogen	aiiii0iitai	c) Hydrogen	d) Phosphorus
	•		, ,	nright an	d can never be inverted?	a) i nospiioras
					c) Pyramid of energy	d) Both (a) and (c)
	Choose the co			ilibei	c) I yrainid of energy	u) both (a) and (c)
			in gm ⁻² yr ⁻¹ or	(kcal m=	2 _{)vr} -1	
		_		-		noniod in plants during
			_		ed per unit area over a time	e period ili piants during
		_	mary production		-+ (-=2) (ll	-2\
			_	_	nt (g ⁻²) or energy (kcal m	-
	Choose the co			uniignt, s	so they accumulate more p	rimary productivity
	a) I and II		o) I and IV		c) I, II, III and IV	d) None of these
	The 10% law i		oj i alia iv		c) 1, 11, 111 and 14	a) None of these
	a) Mendelian s					
	b) Non-Mende	-				
	-	_	ver trophic to hig	thar tron	hic laval	
			ring photosynthe	-		
			organisms are p			
	a) Plants and j	_	-	Toducers	b) Plants and consumers	
	c) Zooplankto				d) Phytoplanktons and ch	lorophyll
	=	= -			u) Filytopialiktolis aliu ci	погориун
	Consider the s			an bridgi	a to the media condition	
					to the mesic condition	
					h to the mesic condition	an a
					the pioneer species is liche	
					ess from mesarch to xerarc	n condition
		_	orrect combination	on match	from above statements?	
	Choose the co	_	-) III 1 II7		-) II I IV	J) I II J III
	a) II and III		o) III and IV	of all	c) II and IV	d) I, II and III
1.54.	willich creatur	es are direct	or mairect food	oi all crea	atures on the ocean's surfa	ce:

a) A-energy; B-grassland b) A-energy; B-forest

c) Fish

b) Phytoplankton

135. An inverted pyramid of ...A... may occasionally be observed in ...B... communities

a) Protozoans

d) Aquatic insects

c) A-biomass; B-marine	d) A-biomass; B-gras	ssland
136. Which one of the following is not a		D. D
a) Productivity b) Starting	, 9,	d) Decomposition
137. Which one of the following types of		
a) Phytoplanktonb) Fish138. Humus is	c) Zooplankton	d) Frog
	ic matter rich in lignin	
a) Dark coloured amorphous organb) Dark coloured organic matter ric	_	
c) Both (a) and (b)	ii iii cenulose	
d) Red coloured substances rich in	iron	
139. In terrestrial ecosystem such as for		ı tropic level?
a) T_1 b) T_2	$^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$	$d)^{T_4}$
, 1	٠,	u j
140. Frog, that feeds on insects, is a a) Primary consumer	b) Secondary consur	mar
c) Tertiary consumer	d) Decomposer	ner
141. The organisms, which attack dead a		
a) First link of the food chain and a		
b) Second link the food chain and a		
c) Third link of the food chain and a		
d) Present at the end of food chain a	-	
142. Pyramid of energy in aquatic ecosys		
a) Always upright b) Alway	vs inverted c) Bell-shaped	d) None of these
143. Consider the following statements a	about ecological pyramids	
I. Charles Elton developed the conc	ept of ecological pyramid	
II. After the name these pyramids a		
	or pyramid shaped diagram which depi	icts the number of organisms,
biomass and energy at each trophic		
Which of the statements given above		Dan III
a) I and II b) I and I	III c) II and III	d) I, II and III
Top consumer I		
Primary consumer II		
Primary producer III		
Solar radiation IV		
I. 10 kcal/m²/yr II. 100 kcal/n	n ² /yr	
III. 1000 kcal/m²/yr IV. 100000 kc	* *	
• • •	gy pyramid. The ecological efficiency at	nrimary consumer level in
comparison to that at secondary co		primary consumer level, in
a) Same	b) More	
c) Less	d) Cannot be ascerta	nined from the data
145. Which of the following pyramid of r		
	t ecosystem c) Tree ecosystem	d) Forest ecosystem
146. A lion that eats a zebra that ate gras	ss is a	•
a) Primary producer	b) Primary consume	er
c) Secondary consumer	d) Quaternary consu	
147. Pyramids of biomass in pond ecosy		
a) Inverted		
b) Upright		

c) Linear		
d) Irregular		
148. The process of which humus is degraded by some n	nicrobes to release inorgan	ic nutrients is known as
a) Mineralization	b) Humification	
c) Photophosphorylation	d) Pollination	
149. The process of mineralisation by microorganisms h	elps in the release of	
a) Inorganic nutrients from humus		
b) Both organic and inorganic nutrients from detrit	us	
c) Organic nutrients from humus		
d) Inorganic nutrients from detritus and formation	of humus	
150. Which of the following plants develop characters of	xerophytes?	
a) Heliophytes b) Sciophytes	c) Hydrophytes	d) Halophytes
151. Which one of the following statements is correct for		
a) It occurs on a deforested site		
b) It follows primary succession		
c) It is similar to primary succession except that it h	nas a relatively fast pace	
d) It begins on a bare rock		
152. Phytoplanktons are found in which of the following	zones?	
a) Limnetic zone	b) Secondary consumers	;
c) Littoral zone	d) Aphotic zone	
153. The role of a cow in a food chain is	, ,	
a) Primary consumer b) Heterotroph	c) Herbivores	d) All of these
154. Which of the following are the essential sources for		•
I. Burning of wood		
II. Volcanic activity		
III. Combustion of organic matter		
IV. Fossil fuels	0.0000000000000000000000000000000000000	
Choose the correct option	CATION	
a) I, II and III b) II, III and IV	c) I, III and IV	d) I, II, III and IV
155. Source of energy in an ecosystem is	·	
a) Sun b) ATP	c) Sugar made by plant	d) Green plant
156. Consider the following statements about limitations	s of ecological pyramids	
I. It never takes into account the same species belor	nging to two or more troph	ic levels
II. It assumes a simple food chain, which never exist	s in nature	
III. In split of the vital role played by saprophytes/d	ecomposers, they are not g	given any position in
ecological pyramids		
Which of the statements given above are correct?		
a) I and II b) I and III	c) II and III	d) I, II and III
157. Which of the following always has a pyramidal shap	e, that is, decreasing value	s at higher trophic levels?
a) Pyramids of number	b) Pyramids of biomass	
c) Both (a) and (b)	d) Pyramids of energy	
158. Identify the plant belonging to the reed-swamp stag	ge in hydrarch succession	
a) <i>Juncus</i> b) <i>Sagittaria</i>	c) <i>Salix</i>	d) <i>Trapa</i>
159. Secondary productivity is		
a) The rate of formation of new organic matter by c	onsumers	
b) Greater than primary productivity		
c) 5% less than primary productivity		
d) Equal to the gross primary productivity		
160. Extinction of a species in a food chain is compensate	ed by	

	25 11.	15.5) n 1 1	D.M. Col
	a) Food chain	b) Ecological pyramid	c) Food web	d) None of these
161.			each a climax community a	are
	I. changes in the diversity	_		
	II. increase in the number			
	III. increase in the total bid			
	Choose the correct option			
	a) I and II	b) I and III	c) II and III	d) I, II and III
162.	Which one of the following			
	a) Sulphur cycle	b) Phosphorus cycle	c) Nitrogen cycle	d) All of these
163.	Which of the following sta			
	=	tems are deserts and deep	lakes	
	II. Sugarcane is the most p	-		
	III. Most productive ecosy			
	Choose the correct option			
	a) I and II	b) I and III	c) II and III	d) I, II and III
164.	Pyramid of energy in ecos	ystem is		
	a) Always upright	b) Always inverted	c) Mostly upright	d) Mostly inverted
165.	A plant is			
	a) An autotroph	b) A heterotroph	c) A primary producer	d) Both (a) and (c)
166.	Ecosystem having the high	nest primary productivity i	S	
	a) Pond	b) Ocean	c) Desert	d) Forest
167.	The Great Barrier Reef alo	ng the east coast of Austra	lia can be categorized as	
	a) Population	b) Community	c) Ecosystem	d) Biome
168.	A much smaller fraction of	f energy flows in a terrestr	ial ecosystem through	
	a) Grazing food chain		b) Detritus food chain	
	c) Complex food chain		d) Food web aquatic ecosy	ystem
169.	A is required for highe	r primary productivityB	have the lowest primary	productivity as the soil is
	deficient in moisture.	JPLUS EDUC	AHON .	
	Choose the correct option			
	a) A-Rain; B-desert	b) A-Heat; B-forest	c) A-Rain; B-forest	d) A-Forest; B-desert
170.	Driving force of any ecosy	stem is		
	a) Organic fuels and carbo	hydrates	b) Biomass	
	c) Solar energy		d) Decomposers	
171.	Climax community is			
	a) Stable		b) Self perpetuating	
	c) Final biotic community		d) All of these	
172.	Stratification occurs in			
	a) Desert	b) Tropical forest	c) Deciduous forest	d) Tundra
173.	Plant species having a wid	le range of genetical distrib	oution evolve into a local po	pulation known as
	a) Ecotype	b) Biome	c) Ecosystem	d) Population
174.	Regarding 10% law			
	I. This law was put forwar	d by Lindeman in 1942		
	II. According to this law, d	uring the transfer of food ϵ	energy from one tropical lev	vel to the other, only about
	10% is stored at higher tro	ophic level and the remaini	ing 90% is lost in respiratio	on, decomposition and
	waste in the form of heat			
	Which of the statements g	iven above is/are correct?		
	a) Only I	b) Only II	c) I and II	d) None of these
175.	Ecological succession is a			
	a) Long term process	b) Very fast process	c) Short term process	d) Migration

176.	6. At which latitude, heat gain through insolation approximately equals heat loss through terrestrial radiation?					
	a) 66° North and South		b) $22\frac{1}{2}^{\circ}$ North and South			
	c) 40° North and South		d) $42\frac{1}{2}$ ° North and South			
177.	<i>*</i>	ner plants to survive, but th	ney do not eat animals. Refe	r the best category for		
	a) Decomposers	b) Carnivores	c) Producers	d) Herbivores		
178.	If we completely remove to because	the decomposers from an e	ecosystem, its functioning w	vill be adversely affected		
	a) Herbivores will not rec	eive solar energy	b) Mineral movement will	l be blocked		
	c) The rate of decomposit	ion will be very high	d) Energy flow will be blo	cked		
179.	To show how many organ	isms are present at each le	evel of a food chain, ecologis	sts use a model called		
	a) An energy flow pyrami	d	b) Pyramid of numbers			
	c) Pyramid of energy		d) Food chain/food web p	yramid		
180. Competition for food, light and space is most severe between two						
a) Closely related species growing in different niches						
		es growing different niche	S			
		c) Closely related species growing in same niches				
101	d) Distantly related specie		as amount of CO in the atm	a a amh a ma?		
101.	a) Deforestation	e responsible increase to ti	ne amount of CO ₂ in the atm b) Massive burning of foss	=		
	c) Vehicle for energy		d) All of the above	sii iucis		
182.	The reservoir for the gase	ous type of higgeochemica				
	a) Stratosphere	b) Atmosphere	c) Ionosphere	d) Lithosphere		
183.	Autotrophs	.,	.,	,		
	a) Make their own food		b) Are the base of the food	d chain		
	c) Are primary producers	WPILIS EDUC	d) All of the above			
184.	An ecosystem, which can be having	be easily damaged but can	recover after some time if o	damaging effect stops, will		
	a) Low stability and high	resilience	b) High stability and low i	resilience		
	c) Low stability and low r	esilience	d) High stability and high	resilience		
185.	Which of the following eco	osystem types has the high	est annual net primary pro	ductivity?		
	a) Tropical rain forest		b) Tropical deciduous for			
	c) Temperate evergreen f		d) Temperate deciduous f	orest		
186.	In pond ecosystem, diator	-		D. m		
107	a) Producers	b) Primary consumer	c) Secondary consumer	d) Tertiary consumer		
187.	The importance of ecosys a) Cycling of materials		a) Dath (a) and (b)	d) Ita hiomaga		
100	Two species occupying sa	b) Flow of energy	c) Both (a) and (b)	d) Its biomass		
100.	a) Sympatric	b) Allopatric	c) Parapatric	d) Ring species		
189.	, , .		ramid of numbers in a grass			
			S	, and the second		
	a) A	b) B	c) C	d) None of these		
190.	Choose the area which wi					
	a) Newly created reservoi	r	b) Bare rock			

c) Buried or cut forest	d) Newly cooled lava				
191. Each tropical level has a certain mass of living material at a particular time called					
a) Standing crop	b) Biomass				
c) Branching lines	d) Progressive straight lir	ne.			
192. What is the rate of secondary production in the en	_				
I. 10 kcal/m²/yr Top consumer I	tergy pyramia given below.				
II.100 kcal/m ² /yr Primary consumer II					
III. 1000 kcal/m²/yr Primary producer III					
IV. 100000 kcal/m ² /yr Solar radiation IV					
a) Uncertain b) 100 kcal/m²/yr	c) 10 kcal/m²/yr	d) 110 kcal/m²/yr			
193. Energy transfers or transformation are never 100	% efficient. This is due to				
a) Entropy b) Homeostasis	c) Catabolism	d) Anabolism			
194. The process by which water soluble inorganic nut	rients go down into the soil h	orizon and get precipitated			
as unavailable salts is called as					
a) Fragmentation b) Leaching	c) Catabolism	d) Mineralization			
195. The nature of climax community in ecological succ	cession in most dependent up	on			
a) Climate b) Water	c) Soil fertility	d) None of the above			
196. Group of two or more than two plant species is cal	lled as				
a) Plant community b) Animal ecosystem	c) Plant ecosystem	d) Ecological niche			
197. The products of decomposition process are					
a) Humus b) Inorganic nutrients	c) Organic nutrients	d) Both (a) and (b)			
198. The reservoir for the sedimentary cycle exists in	>				
a) Earth crust b) Organic sediments	c) Calcareous sediments	d) Limestone			
199. Standing crop refers to					
a) All the photosynthetic living forms in an area					
b) All he living forms in an area					
c) The amount of living matter in a component po	pulation of an ecosystem at a	ny time			
d) All the crop plants in an area	07112011				
200. Nektons are					
a) Organisms that swim in water	b) Floating plants				
c) Suspended lower plants	d) Animals associated wit	th plants			
201. Vertical distribution of different species occupying	g different levels in an ecosys	tem is called			
a) Stratification b) Decomposition	c) Fragmentation	d) Humification			
202. Fill in the missing stages (A to D) in the given prim					
Phytoplankton \rightarrow (A) \rightarrow (B) \rightarrow (C) \rightarrow Marsh-meado		nt stage			
a) A-Read-swamp-stage, B-Sub-merged plant stag					
b) A-Sub-merged plant stage, B-Sub-merged free-f					
c) A-Scrub stage, B-Sub-merged plant stage, C-Rea	~ -				
d) A-Read-swamp stage, B-Scrub stage, C- Sub-me	1 0				
203. A community that starts the process of succession					
a) Emotional community	b) Climax community				
c) Seral community	d) Pioneer community				
204. How much incident sun radiation on earth is utilis	•				
a) 0.01 b) 0.001	c) 1	d) 2			
205. Percentage of Photosynthetically Active Radiation	-				
matter is	, , , , , , , , , , , , , , , , , , ,	-y			
a) 50-80% b) 40-60%	c) 70-100%	d) 2-10%			
	*	*			

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 P a g e | 16

a) Feedback mechanism	b) Self regulatory med	hanism	
c) Influence of production	d) State of equilibriun	d) State of equilibrium	
207. Trophic level in ecosystem is formed by			
a) Only bacteria	b) Only plants		
c) Only herbivores	d) Organisms linked ii	n food chain	
208. Which one of the following is a sedimentary cyc	le?		
a) Sulphur cycle b) Nitrogen cycle	c) Carbon cycle	d) Oxygen cycle	
209. Select the matched ones.			
I. Sedimentary nutrient - Nitrogen cycle			
II. Pioneer species - Lichens			
III. Secondary succession - Burned forests	S		
IV. Pyramid of biomass in sea - Upright			
a) I, II and IV only b) I and III only	c) II and III only	d) II and IV only	
210. Which of the following is an example of man-ma	de ecosystem?		
a) Herbarium b) Aquarium	c) Tissue culture	d) Forest	
211. PAR stands for		,	
a) Photosynthesis Active Reaction	b) Photosynthesis Abs	sorb Radiation	
c) Photosynthetically Active Radiation	d) Photosynthetically		
212. The sunlight directly regulates the primary prod			
a) Gross primary productivity is utilised by plan	_		
b) The plants perform respiration with the help	-		
c) The plants perform photosynthesis with the l	_		
d) None of the above			
213. What is the reason behind deficit rising in nutrio	ent reservoir?		
a) Due to imbalance in the rate of influx	b) Due to imbalance in	the rate of efflux	
c) Due to imbalance in the rate of influx and effl			
214. "Complete competitiors cannot coexist" is true f			
a) Character displacement	b) Competitive exclus	ion	
c) Primary succession	d) Secondary successi		
215. In a comparative study of grassland ecosystem a			
a) The biotic components are almost similar	a. possa occosjocem, ic maj		
b) The abiotic components are almost similar			
c) Primary and secondary consumers are simila	r		
d) Both biotic and abiotic components are differ			
216. Food chain refers to	circ .		
a) Number of humans forming a chain for food	b) Animals gathered n	ear a source of food	
c) Transfer of energy from producers to consum	-		
217. A person who eats a chicken that ate grain is a			
a) primary producer	b) primary consumer		
c) secondary consumer	d) quaternary consum	ner	
218. Pyramid that is never inverted	aj quaternary consum		
a) Energy b) Mass	c) Number	d) Size	
219. Major ecological community of plants and anima	-		
a) Bioregion b) Biosphere	c) Biota	d) Biome	
220. In a pyramid of numbers in a grassland ecosyste	•	•	
a) Producers b) Tertiary consumer		ers d) Primary consumers	
221. The exchange pool in the carbon cycle is	5 c _j secondary consum	cro aj i i iliai y consumers	
a) Fossil fuels b) Sedimentary rock	c) Water	d) Atmosphere	
222. Primary productivity is	c) water	a) nanosphere	
LLL. I Illiary productivity is			

	II. is the rate of formation of new organic matter by consumers				
	III. is expressed in terms	of weight or energy			
	IV. is the amount of biom	nass or organic matter pr	oduced per unit area over a	a time period in plants during	
	photosynthesis				
	Which of the statements	given above are correct?			
	a) I, II and III	b) I and II	c) III and IV	d) II and IV	
223	Which of the following is	s false?			
	a) Quantity of biomass is	s a trophich level at a par	ticular period is called as s	tanding crop	
			ined by considering indivi		
	trophic level	_		-	
	c) The succession that o	ccurs in newly cooled lav	a is called primary success	ion	
	d) Rate of succession is f	aster in secondary succes	ssion		
224	These belong to the cate	gory of primary consume	ers.		
	a) Snakes and frogs	b) Water insects	c) Eagle and snakes	d) Insects and cattle	
225	=	•	phic level of a food chain is	-	
	a) Numbers	b) Energy	c) Biomass	d) All of the above	
226	Primary productivity de		,	,	
	a) Availability of nutrien	•	b) Photosynthetic capa	acity of plants	
	c) Both (a) and (b)		d) None of the above	The process of the pr	
227	Consider the following s	tatements	.,		
	_	The state of the s	they are able to change ra	diant energy into chemical	
	form	S 1.	g		
		ls, which feed on other or	ganisms or their parts		
		The state of the s	dead bodies of organisms		
	•	given above are correct?	_		
	a) I, II and III	b) I and II	c) I and III	d) II and III	
228				anism in a food chain because	
220		icers than consumer in a		amom m a rood cham becade	
	_	onsumers than producer			
	*	ry consumers compete fo			
			11000		
d) Most of the energy is used for life processes 229. The process of accumulation of a dark colouredA substance calledB that is highly resistant to					
227					
	microbial action and undergoes decomposition at an extremely slow rate is calledC Choose the correct option for A, B and C				
	=				
	a) A-amorphous, B-humus, C-humification b) A-solid, B-minerals, C-mineralisation				
	•	organic nutrients, C-leach	inα		
	d) A-enzymatic, B-detrit		ing		
230	In autogenic succession,	us, G-catabolisiii			
230	•	lominance of autotrophic	h) Ponlacement of evic	sting communities cause	
	organism takes place	-	largely by any other	_	
				odifies its own environments	
		eterotrophis takes piace s	uch ai Community usen m	ountes its own environments	
	ac hactoria fungi and	other animals			
	as bacteria, fungi and	other animals	thus causing its own	n replacement by new	
221	_		thus causing its own communities	n replacement by new	
231.	Which of the following c		thus causing its own communities erable to invasion by outsi	n replacement by new	
231	Which of the following ca	ommunities is more vuln	thus causing its own communities erable to invasion by outsi b) Tropical evergreen	n replacement by new	
	Which of the following caa) Temperate forests c) Oceanic island commu	ommunities is more vuln unities	thus causing its own communities erable to invasion by outsi b) Tropical evergreen d) Mangroves	n replacement by new	

I. is 10% less than secondary productivity

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 18

called

- a) Assimilation efficiency
- c) Lindemann's trophic efficiency rule
- b) Exploitation efficiency
- d) Gross primary production
- 233. The two components of an ecosystem are
 - a) Plants and animals

a) Detritus food chain

- b) Weeds, trees, animals and man
- c) Energy flow and mineral cycling
- 234. The food chain which begin with dead organic matter is called
 - b) Predator food chain
- d) Biotic and abiotic c) Parasitic food chain
- 235. The rate of formation of new organic matter by rabbit in a grassland is called
 - a) Net productivity

b) Secondary productivity

c) Net primary productivity

- d) Gross primary productivity
- 236. The sequence of communities showing a gradual change in composition is called
 - a) Continuum
- b) Bio indicator
- c) Succession
- d) Pyramid of number

d) Ecosystem

- 237. Which of the following is the logical sequence of primary succession in water?
 - a) Small phytoplanktons \rightarrow Free-floating angiosperms \rightarrow Rooted hydrophytes \rightarrow Sedges \rightarrow Grasses \rightarrow Trees
 - b) Free-floating angiosperms \rightarrow Small phytoplanktons \rightarrow Rooted hydrophytes \rightarrow Grasses \rightarrow Sedges \rightarrow Trees
 - c) Small phytoplanktons \rightarrow Sedges \rightarrow Free floating angiosperms \rightarrow Rooted hydrophytes \rightarrow Grasses \rightarrow Trees
 - d) Small phytoplanktons \rightarrow Sedges \rightarrow Grasses \rightarrow Free-floating angiosperms \rightarrow Rooted hydrophytes \rightarrow Trees
- 238. In an aquatic ecosystem, the trophic level equivalent to cows in grasslands is
 - a) Phytoplankton
- b) Zooplankton
- c) Nekton
- d) Benthos

- 239. Energy for the detritus food chain comes from
 - a) Organic remain
- b) Air

- c) Radiation
- d) Water

- 240. The organic substance, which decompose slowly are
 - a) Chitin
- b) Lignin
- c) Cellulose
- d) All of these

- 241. Stability of ecosystem depends upon
 - a) Primary productivity
 - a) Primary productivity
 b) Interchange between producers and consumers

 - d) Number of consumers
- 242. Mr. X is eating curd/yoghurt. For this food intake in a food chain, he should be considered as occupying
 - a) First trophich level

b) Second trophic level

c) Third trophic level

- d) Fourth trophic level
- 243. Study the diagram carefully and fill in the blanks

Choose the correct option for A, B, C, D and E

- a) A-Biotic, B-Abiotic, C-Decomposers, D-Photoautotrophs, E-Chemoautotrophs
- b) A-Physical, B-Chemical, C-Phytoplanktons, D-Plants, E-Parasites
- c) A-Biotic, B-Abiotic, C-Decomposers, D-Autotrophs, E-Mixotrophs
- d) A-Physical, B-Chemical, C-Bacteria and Fungi, D-Autotrophs, E-Heterotrophs
- 244. A pyramid of number in grassland ecosystem shows
 - a) There are always a large number of producers at the bottom and fewer top consumers

	c) There are an equal number of producers and con	sumers		
	d) There are more top consumer than primary consumers			
245.	Phosphorus is needed for the production of			
	a) DNA and RNA b) Cellular membranes	c) Bones and teeth	d) All of these	
246.	Which of the following statement is true about ecos	ystem?		
	a) The term 'ecosystem' was coined by Sir AG Tansl	ey		
	b) The size of the ecosystem varies from small pond	l to a large forest or sea		
	c) In a forest ecosystem, trees occupy top vertical st	trata or layer, shrubs occupi	es the second layer and	
	herbs and grasses occupies the bottom layers			
	d) All of the above			
247.	Which food chain correctly describes the flow of end	ergy in an ecosystem?		
	a) Grass → cow → human	b) Caterpillar \rightarrow leaf \rightarrow hu	man	
	c) $Cow \rightarrow grass \rightarrow human$	d) Leaf \rightarrow bird \rightarrow caterpill	ar	
248.	Phosphorus is the major constituent of			
	I. biological membranes			
	II. nucleic acids			
	III. cellular energy transfer system			
	Choose the correct option			
	a) I and II b) I and III	c) II and III	d) I, II and III	
249.	The biomass available for consumption by the herbi	ivores and the decomposers	s is called	
	a) Net primary productivity	b) Secondary productivity	<i>I</i>	
	c) Standing crop	d) Gross primary product	ivity	
250.	'Sun basket' is			
	a) The device to utilize sun rays directly to meet the	e requirement of heat energ	y	
	b) The sufficient amount of sunlight stored in a cell			
	c) A device of taking sunbath	LACITAS		
	d) All of the above	LATION		
251.	In a grazing food chain carnivores may also the refe	rred to as		
	a) Primary producers			
	b) Secondary producers			
	c) Primary consumers			
252	d) Secondary consumers			
<i>Z</i> 5 <i>Z</i> .	In a food chain, the total amount of living material is	•	1) 77 1 1 1	
252	a) Pyramid of biomass b) Pyramid of energy	c) Pyramid of number	d) Trophic levels	
253.	In an ecosystem, the insectivorous plants are placed		d) None of these	
254	a) Herbivores b) Primary producers Find the correct statement	c) Predators	d) None of these	
234.	a) Low temperature and aerobic conditions inhibit	docomposition		
	b) Plants capture only 2-10%, of the PAR and sustai	•		
	c) In aquatic and terrestrial ecosystems the GFC is t	•	z flow	
	d) Measurement of biomass in terms of fresh weigh			
255	The rate of which organic compounds are formed in	_	-	
200.	unit time and area is known as the	a green plant of in a popul	action of green plants per	
	a) Net primary productivity	b) Gross primary product	ivity	
	c) Community productivity	d) Secondary productivity	•	
256	The correct sequence of plants in a hydrosere is	, occorracy productivity	,	
	a) Oak \rightarrow Lantana \rightarrow Scirpus \rightarrow Pistia \rightarrow Hydr	illa → Volvox		
	b) $Volvox \rightarrow Hydrilla \rightarrow Pistia \rightarrow Scirpus \rightarrow L$			

b) There are always a large number of top consumers and fewer producers

c) $Pistia \rightarrow Volvox \rightarrow Scirpus \rightarrow Hydrill \rightarrow Oa$		
d) Oak \rightarrow Lantana \rightarrow Volvox \rightarrow Hydrilla \rightarrow Pis	-	
257. A sequence of species or organism through which the		=
a) Pyramid of energy b) Food chain	c) Food web	d) Nutrient cycle
258. Detritus food chain law accounts for more energy flo	ow than garzing food chain	because
a) Most organisms die without having being eat	en	
b) Most organisms do not die		
c) Most organisms having being eaten		
d) None of the above		
259. Select the formula for ecological efficiency.		
	Food energy assimilate	ed
a) $\frac{\text{Gross primary productivity}}{\text{Incident total solar radiatio}} \times 100$	b) Food energy assimilated Food energy ingested	—× 100
moracine total botal radiatio	Energy in biomass pro	
Net primary productivity		
c) $\frac{\text{Net primary productivity}}{\text{Gross primary productivity}} \times 100$	d) $\frac{\text{at trophic leve}}{\text{Energy in biomass pro}}$	duction × 100
	at previous trophic	level
260. Primary consumers are		
a) Carnivores b) Herbivores	c) Decomposers	d) Omnivores
261. A functional aspect of an ecosystem is		
a) Productivity and decompositions	b) Energy flow and nutrie	ent cycling
c) Both (a) and (b)	d) None of the above	, 0
262. Consider the following statements	,	
I. In a food chain one organism holds only one positi	on	
II. In a food chain the flow of energy can be easily ca		
III. In food chain competition is limited to the memb		
Which of the statements given above are correct?	ers or sume tropme to er	
a) I, II and III b) I and II	c) I and III	d) II and III
263. What is the percentage of Photosynthetically Active		-
considered 100%?	Radiation (1711), it inclues	t solar radiation is
a) 100% b) 1-6%	c) 2-20%	d) 50%
264. Choose the wrong pair.	c) 2-2070	u) 3070
a) <i>Salvadora</i> – Desert	b) <i>Cenchrus</i> – Savanna	
		o forest
c) <i>Abies</i> – Coniferous forest	d) <i>Tectona</i> – Temperat	e forest
265. Which is an example of true pyramid in an ecosystem		D. N C. L L
a) Pyramid of a biomass b) Pyramid of number	c) Pyramid of energy	d) None of the above
266. The minimum number of components required for a		
a) Producer and primary consumer	b) Producer and decompo	
c) Primary consumer and decomposer	d) Primary and secondary	y consumer
267. The 10% energy transfer law of food chain was give		
a) Lederberg b) Lindemann	c) Weismann	d) Lindley
268. In plant succession, when climax community is reac		
a) Continues to increase b) Becomes zero	c) Becomes reduced	d) Becomes stable
269. In plant succession, when climax is reached, the net	productivity	
a) Continues to increase b) Becomes halved	c) Becomes stable	d) Becomes zero
270. The transition zone between two communities is kn	own as	
a) Ecotone b) Keystone species	c) Edge effect	d) Critical link species
271. Primary productivity is		
a) The rate of formation of new organic matter by co	onsumers	
b) The rate of conversion of light into chemical ener	gy in an ecosystem	

c) The rate of energy production per unit area over	a time period during photo	osynthesis	
d) None of the above			
272. In food chain, maximum energy is stored in			
a) Producer	b) Primary consumer		
c) Secondary consumer	d) Decomposer		
273. Consider the following statements about pyramid of	of biomass		
I. When we plot the biomass (net dry weight) of pro	oducers, herbivores, carniv	ores and so on we have a	
pyramid of biomass			
II. Two types of pyramid of biomass are found, i.e.,	upright and inverted		
III. When larger weight of producers support a sma	ller of biomass weight of co	onsumers an upright	
pyramid results			
IV. When smaller weight of producers support large	er weight of consumers an i	inverted pyramid of biomass	
is formed	J		
Which of the statements given above are correct?			
a) I, II and III b) I, III and IV	c) II, III and IV	d) I, II, III and IV	
274. The final stable community in ecological succession	•		
a) Pioneers b) Sere	c) Climax	d) Carnivores	
275. In what order do a hawk, grass and rabbit form a fo			
a) Hawk → grass → rabbit	b) Grass → hawk → rabb	it	
c) Rabbit → grass → hawk	d) Grass → rabbit → haw		
276. Pond is defined as a	,		
a) Biome b) Agroecosystems	c) Natural ecosystem	d) Community	
277. What is the amount of carbon fixed in biosphere the		-	
a) 4×10^{13} kg b) 5×10^{13} kg	c) $4 \times 10^{16} \text{kg}$	d) 5×10^{16} kg	
278. Find out the correct order of succession levels in xe	, ,	3	
a) Lichen, moss stage, annual herb stage, perennial		est	
b) Annual herb stage, perennial herb stage, lichen, n			
c) Perennial herb stage, annual herb stage, lichen, r			
d) Scrub stage, forest, annual herb stage, perennial			
279. Niche is defined as the	3 / /	O	
a) Position of species in a community in relation to	other species		
b) Place where organism lives			
c) Place where organism lives and performs its dut	y		
d) Place where population perform their duties			
280. In the phosphorus cycle, weathering makes phosph	ate available first to		
a) Producers b) Decomposers	c) Consumers	d) None of these	
281. Most stable ecosystem is			
a) Desert b) Marine	c) Mountain	d) Forest	
282. Which of the following is wrongly matched?		,	
a) Temperate zone - 20 – 40° latitude			
b) Hypolimnion - Thermal stratification in la	akes		
c) Ozone layer - Stratosphere			
d) Profundal zone - Dark zone			
283. The factors influencing the rate of decomposition at	re		
a) Temperature b) Moisture	c) Both (a) and (b)	d) Catabolism	
284. Given below is the diagram of the ecological pyram:	ids		

This type represents

- a) Pyramid of number in a grassland
- c) Pyramid of biomass in a land

- b) Pyramid of biomass in a laked) Pyramid of energy
- 285. Decomposers like fungi and bacteria are
 - I. autotrophs
 - II. heterotrophs
 - III. saprotrophs
 - IV. chemoautotrophs

Choose the correct option

- a) I and II
- b) I and IV
- c) II and III
- d) I and III
- 286. Which of the following groups is absolutely essential functional component of the ecosystem?
 - a) Producers

b) Producers and herbivoresd) Detritivores

- c) Producers and detritivores
- 287. Lichens that start the succession on a rock belongs to
 - a) Climax community

b) Intermediate community

c) Pioneer community

- d) Seral community
- 288. Peacock eats a snake and snake eats frog and frog eats insect while insect eats green plant, the position of peacock is
 - a) Primary producer

b) Secondary producer

c) Decomposer

- d) Top at the apex of food pyramid
- 289. The enzymatic process by which degraded detritus is converted into simpler inorganic substances is called
 - a) Catabolism
- b) Leaching
- c) Mineralisation
- d) Fragmentation
- 290. Given food web contains some missing organisms *A*, *B*, *C* and *D*. Identify these organisms and select the correct answer

- a) A-Deer, B-Frog, C-Foxes, D-Sparrow
- b) A-Dog, B-Squirrel, C-Deer, D-Hawks

c) A-Cat, B-Eagle, C-Cow, D-Rat

d) A-Eagle, B-Sparrow, C-Dog, D-Cat

- 291. Consider the following statements
 - I. The pyramid of biomass is inverted in a pond ecosystem
 - II. Pyramid of energy is never inverted
 - III. Pyramid of number is inverted in a tree ecosystem
 - IV. Pyramid of biomass in forest ecosystem is upright

Which of the statements given above are correct?

- a) I, II and III
- b) I, III and IV
- c) II, III and IV
- d) I, II, III and IV

- 292. Plants which are attached to the rocks are called
 - a) Lithophytes
- b) Aerophytes
- c) Halophytes
- d) Psammophytes
- 293. Community is a group of independent and interacting population of
 - a) Different species

b) Same species

c) Same species in a specific area	d) Different species in a s	pecific area		
294. The ecological pyramid that is always upright				
a) Pyramid of energy b) Pyramid of biomass	c) Pyramid of number	d) None of these		
295. The sequential, gradual and predictable changes in t	295. The sequential, gradual and predictable changes in the species compositions in an area are called			
a) Seral community b) Climax community	c) Ecological succession	d) Pioneer species		
296. Food chain is a series of population, which starts wit	th producers. It is concern	ing with		
a) Biotic components only	b) Energy flow and trans	=		
c) Both (a) and (b)	d) Abiotic components ar			
297. The total amount of energy that plants assimilate by		•		
a) Gross primary productivity	b) Net primary productiv	rity		
c) Community productivity	d) Secondary productivit	=		
298. One model that shows how energy passes from one				
a) An energy link	b) A food chain	T		
c) A phytoplankton cycle	d) Photosynthesis			
299. Suppose 2000 J of solar energy is incident on green v	•	10% law of Lindeman		
Identify A , B and C	egousiem en une suois er	1070 Iden of Emidenium		
S S				
J. digital				
" San Labor."				
Producer Herbivores Carnivore A J B J C J				
AJ BJ CJ				
a) A-20 J, B-2 J, C-0.2 J b) A-200 J, B-20 J, C-2 J	c) A-400 J, B-40 J, C-4 J	d) A-40 J, B-4 J, C-0.4 J		
300. In an ecosystem, in which an organism occupies a sp	ecific place in a food chain			
a) Branching lines	b) Progressive straight li			
c) Trophic level	d) Standing crop			
301. Pollution caused by persistent pesticides is relatively		type of organisms?		
THE STATE OF THE S	b) First level carnivores	71 8		
a) Herbivores c) Producers	d) Top carnivores			
302. All are true for climax community except	., ., .,			
a) Rapidly keeps on changing to reach equilibrium	b) Final community			
c) End of succession	d) Stable			
303. Productivity is the rate of production of biomass exp	,			
I. (kcal m) $^{-3}$ yr $^{-1}$	ressed in terms of			
II. $g^{-2}yr^{-1}$				
III. $g^{-1}yr^{-1}$				
IV. (k cal m ⁻²)yr ⁻¹				
Choose the correct option				
-	c) II and IV	d) I and III		
	•	a) i alia ili		
304. Excessive moisture inhibit the process of decomposi	b) Aerobiasis			
a) Anaerobiasis	,			
c) Photoxidation	d) Photophosphorylation			
305. Select the true statements	1 4 4			
I. Gross primary productivity is equal to the net prim		-		
II. Gross primary productivity is equals to net prima		synthesis		
III. Net primary productivity is equal to photosynthe				
IV. Net primary productivity is equal to gross primar	ry productivity minus resp	iration		
V. Flow of energy in an ecosystem is unidirectional				
a) I, II and III b) I, IV and V	c) II and III	d) IV and V		

306. Which of the following statements regarding food chain is false?			
a) In an aquatic ecosystem, grazing	food chain is the ma	njor conduit for energy fl	ow
b) In terrestrial ecosystems, a large	fraction of energy fl	lows through detritus fo	od chain
c) The detritus food chain begins w	ith dead organic ma	tter	
d) Primary consumers belong to the	e first trophic level		
307. Phytoplanktons			
a) Actively floating microscopic pla	nt b)	Floating angiosperm	
c) Benthic organisms	d)	Passively floating micro	oscopic plant
308. Which of the following pair is a gase	eous type of biogeoc	hemical cycle?	
a) Nitrogen and carbon cycle	b)	Phosphorus and carbor	n cycle
c) Nitrogen and sulphur cycle	d)) Sulphur and carbon cyc	cle
309. Which zone of a lake has no photos	ynthetic organism?		
a) Profundal zone b) Littor	al zone c)	Limnetic zone	d) Both (b) and (c)
310. The second stage of hydrosere is oc	-		
a) <i>Salix</i> b) <i>Vallis</i>		Azolla	d) <i>Typha</i>
311. If decomposers are removed what was	•		<i>y v</i> 1
a) Energy cycle is stopped	= =) Mineral cycle is stoppe	d
c) Consumers cannot absorb solar	-	Rate of decomposition	
312. If a single plant species is removed		-	
a) An animal species will fill the un		on most imory	
b) Other plants will produce enough	=	S	
c) Dependent herbivores will have			
d) Carnivores will be unaffected by		ii ccs	
313. Food chain starts with	the 1033		
a) N_2 -fixation b) Osmo	cic c)	Respiration	d) Photosynthesis
314. Fungi in a forest ecosystem is	515	Respiration	d) I flotosyfithesis
a) Producer b) Decor	nnocor	Top consumer	d) Autotroph
		Top consumer	u) Autotropii
315. The ultimate energy source of ecos		Dwadugan	d) Cambahyudmataa
a) Solar energy b) Bioma		Producer	d) Carbohydrates
316. Lichen is the pioneer vegetation on		Daammaaana	d) Vanagana
a) Hydrosere b) Lithos	sere cj	Psammosere	d) Xerosere
317. Benthic organisms are found in	1. 7	M: 1-11 C	
a) Surface of marine water		Middle of water in sea	
c) Bottom of sea	-	On ground	
318. Organisms that breakdown the detr	-		12.37
a) Herbivores b) Carniv	-	Detritivores	d) None of these
319. The assemblage of all the populatio	=		egrated unit through
coevolved metabolic transformatio	•		
-		Population	d) Ecosystem
320. The organisms which physically an			
a) Scavangers b) Decor	-	Both (a) and (b)	d) Parasites
321. Which of the following helps in the			al rain forest?
a) Microclimate) C ₄ –pathway	
c) Eutrophication	d)	Biological magnificatio	n
322. Which one of the following shows d	letritus food chain?		
a) Organic waste → Bacteria → M	folluscs b)	Grass → Insects → Sr	nakes
c) Plankton \rightarrow Small fishes \rightarrow Large fishes d) All of the above			
323. Energy enters the ecosystem through	gh		
a) Herbivore b) Carni	vore c)	Producer	d) Decomposer

324. Deserts, grassianus, iorest	is and tundra are the exam	pies of	
a) Biomes		b) Biogeographical region	ns
c) Ecosystems		d) Biospheres	
325. Decomposers of an ecosys	stem includes		
a) Microscopic animals		b) Bacteria and fungi	
c) Earthworm and Arctic	Raven	d) All of the above	
326. The pyramid of energy is a		•	cates the fact that
a) Producers have the low		=	
b) Carnivores have a bette			
c) Energy conversion effic		•	
, .,	er energy conversion effici	-	
327. Term 'ecosystem develop		-	
a) Odum	b) Clements	c) R Misra	d) Blackman
328. Organisms are classified in		•	,
a) Their habitat	1	b) The source of their nut	rients
c) How much they weight		d) All of the above	
329. The tiger biomass is 10 kg			ll be
a) 100 kg	b) 2000 kg	c) One tonne	d) 10 tonne
330. Organisms living in open s	,	-,	,
a) Planktons	b) Nektons	c) Pelagic	d) Benthos
331. Study the four statements		, 0	,
-		n are ecologically similar in	
being consumers.			
g .	<i>ter</i> helps in maintaining sp	ecies diversity of some inv	ertebrates.
III. Predators ultimately le	- 1 Table	=	
-		ine by the plants are metal	oolic disorders.
a) II and III	b) III and IV	c) I and IV	d) I and II
332. In food chain, lion is a	TRAINIS EDUC	.ATION	,
a) Tertiary consumer	21103100	b) Secondary consumer	
c) Primary consumer		d) None of these	
333. Building of biomass or sto	rage of energy by green pl	ants in a unit time and area	a is called
a) Productivity		b) Net primary productiv	
c) Gross primary producti	ivity	d) Primary productivity	
334. Sal and teak are dominant	-		
a) Tropical rain forest		b) Temperate broad leaf	forest
c) Temperate needle leaf	forest	d) Tropical deciduous for	
335. Rate of conversion of light		rgy of organic molecules in	an ecosystem is
a) gross primary producti		b) Net primary productiv	-
c) Net secondary producti	=	d) Gross secondary produ	=
336. What percentage of heabi	· · · · · · · · · · · · · · · · · · ·	· ·	
carnivore tissue?			
a) 100%	b) 50%	c) 1%	d) 10%
337. In which layer of soil deco		•	-
a) Upper layer of soil	b) Middle layer of soil	c) Lower layer of soil	d) None of these
	•		•

338.

How many food chains are there in the food web shown above?

a) 2

b) 3

c) 5

d) 7

339. Which one of the following is one of the characteristics of a biological community?

a) Stratification

b) Natality

c) Mortality

d) Sex ratio

340. In the given formula, what does 'a' represent?

Assimilatory efficiency = $\frac{\text{Use of energy in food}}{2} \times 1$

a) Energy obtained through primary producer

b) Biomass at own level

c) Biomass at lower trophic level

d) Energy obtained through food

341. Term 'ecosystem' was given by

a) Odum

b) Koestler

c) Tansley

d) Mobius and Forbes

342. Most diverse organisms of an ecosystem are

a) Producers

b) Consumers

c) Carnivores

d) Decomposers

343. Primary succession is the development of communities on

a) Cleared forest area

,111111

b) Previously unoccupied sites

c) Fresh harvested crop field

d) Pond filled after a day season

344. Select the incorrect food chain

a) Grass \rightarrow frog \rightarrow vulture

b) Grass \rightarrow grasshopper \rightarrow frog \rightarrow snake \rightarrow eagle

c) Grass \rightarrow deer \rightarrow lion

d) Phytoplankton \rightarrow zooplankton \rightarrow fish (perch) \rightarrow fish (bass) \rightarrow man

345. Which one of the following correctly represents as organism and its ecological niche?

a) Vallisneria and pond

b) Desert locust (Scistocerca) and desert

c) Plant lice (aphids) and leaf

d) Vultures and denes forest

346. Given below is one of the type of ecological pyramids

This type represents

a) Pyramid of energy in a grassland

b) Pyramid of biomass

c) Pyramid of number in a lake

d) Pyramid of energy in a fallow land

347. The pyramid of number of a parasitic food chain in tree ecosystem is

a) Always inverted

b) Always upright

c) Mixture of inverted and upright

d) Sometimes inverted and sometimes upright

348. Stratification is more pronounced in

a) Tropical rainforest

b) Deciduous forest

c) Temperate forest

d) Tropical savannah

349. Choose the correct combination of labelling of the zones in water in a lake.

- a) A- Limnetic zone B-Profundal zone C-Littoral zone D-Benthic zone
- b) A- Littoral zone B-Benthic zone C-Profundal zone D-Limnetic zone
- c) A- Littoral zone B-Limnetic zone C-Profundal zone D-Benthic zone
- d) A- Limnetic zone B-Littoral zone C-Benthic zone D-Profundal zone
- 350. Breakdown of detritus into smaller particles by earthworm is a process called
 - a) Humification
- b) Fragmentation
- c) Mineralisation
- d) Catabolism

- 351. What is true about the phosphorus cycle?
 - I. Rocks are the natural reservoirs of phosphorus
 - II. Weathering of sedimentary rocks makes phosphate available to the soil
 - III. Herbivores and carnivores obtain phosphorus from plant directly or indirectly Choose the correct option
 - a) I and II
- b) I and III
- c) II and III
- d) I, II and III

- 352. How much carbon is dissolved in the oceans?
 - a) 61%

b) 71%

c) 81%

d) 51%

- 353. Broad-leaved forests of oak are found in
 - a) Tropical deciduous forest

b) Tropical evergreen forest

c) Temperate deciduous forest

- d) North coniferous forest
- 354. The greatest biomass of autotrophs in the world's oceans is that of
 - a) Benthic brown algae, coastal red algae and daphnids
 - b) Benthic diatoms and marine viruses
 - c) Sea grasses and slime moulds
 - d) Free-floating micro-algae, cyanobacteria and nanoplankton
- 355. Which one of the following is commonly found in temperate coniferous forests?
 - a) *Quercus*
- b) *Dipterocarpus*
- c) Shorea robusta
- d) Pinus wallichiana

- 356. Littoral zone is located along the
 - a) High mountains
- b) Sea

- c) Rivers
- d) Desert

- 357. Biological equilibrium is found among the
 - a) Producers, consumers and decomposers
- b) Producers and consumers

c) Producers and decomposers

- d) None of the above
- 358. Net primary productivity is utilised by
 - a) Autotrophs
- b) Heterotrophs
- c) Decomposers
- d) All of the above
- 359. Which of the following is the logical sequence of primary succession in rocks?
 - a) Small bryophytes \rightarrow Lichen \rightarrow Herb \rightarrow Shrubs \rightarrow Tress \rightarrow Forest
 - b) Lichen \rightarrow Small bryophytes \rightarrow Herbs \rightarrow Shrubs \rightarrow Tress \rightarrow Forest
 - c) Lichen \rightarrow Herb \rightarrow Shrubs \rightarrow small bryophytes \rightarrow Tress \rightarrow Forest
 - d) Herb \rightarrow Shrubs \rightarrow Lichen \rightarrow Small bryophytes \rightarrow Tress \rightarrow Forest
- 360. Another name of nutrient cycling is
 - a) Gaseous cycle
- b) Sedimentary cycle
- c) Biogeochemical cycle d) Carbon cycle
- 361. Which one of the following statements for pyramid of energy is incorrect, whereas the remaining three are correct?
 - a) It show energy content of different trophic level of b) It is inverted in shape

organisms

c) It is upright in shape

362. Transition zone between two ecosystems is

a) Ecotype

b) Niche

d) Its base is broad

c) Ecotone

d) Biome

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 29